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Abstract

THis paper addresses the problem of finding a parametric form for the rain drop size dis-
tribution which 1) is anappropriate model for tropical rainfall, and 2) involves statistically
independent parameters.  Such a parametrization is derivedin this paper. T'wo of the
resulting thiree “can onical” parameters turnout to vary relatively little, thus making the
parametrization particularly uscful for remote sensing app lications.




1 introduction

Since Marshall and Pah ner’s pioncering 1948 paper, much attention has heen focused on
obtaining relatively simple analyt ic expressions involving as small @ number of parameters
as possible to model measured drop size distributions (DSD’s). The tillec-])AI ANCtel 1 -
distribution modecl

N(D) = Ny D"t (1)

proposedby Ulbrich (1 983) has been tested using different data scts (sce e.g. Kozu and
Nakat nura, 1991, GoddardandCherry,1984, and Ulbrich, 1983), and it has proved {o be
sufliciently versatile to fit most data satisfactorily, as long as onc is willing to allow a relatively
wide range of values{or thie parameter g,

1T owever, Ulbrich (1983) pointed out,andthe present work confirms, (nite the parameters
N, prand A arc not mutually independent. In p ra ctice, this makes the representat ion (1 )
di flicult 1o use in rain retrieval algorithn ns. To illustrate the problem, supposc one has
mea surements of a rain-related quantity 7 = Z(a) at various altitudes aintheatmosphere.
Oncemaythentryto determine the distribution N(D;a) at the corresponding altitudes. A
priori, all three parameters in (1) may vary with . Yet given one’s singleobserved quantity
7, il is unrealistic 1o expect Lo successfully determine, at cachialtitude, the triple (Ng, g1, A)
that producedtheobserved vaiue Of 7. In t his cisc, one way to circumvent this problem
i s 1o assume that the typi call y-less- variable parameters are constant, c.g. make Ny and
constant, and determine A(a) as a function of the observed Z(a). The specific (constant)
values of - A’ and yrneed not beknownbeforchand 5 one may try to determinie them using
ancillary observa tions or archived hist orical data. The problem with this approach is that
it makes little sense to a ssum ¢ Ngconstant andlet A change according tothe observation,
when one already knows that Ngand A are strongly correla ted.

It is thercfore very useful to derive an expression like (1) but involving statistically
independent parameters, ones that are preferably physically mcaningful. That is the aim of
this papcr.

2 Statistical analysis of the Darwin data

The data analyzed were measured by a Joss-Waldvogel disdrometer (Joss and Waldvogel,
1967, Sheppard and Joe, 1991) Jocated at Berrimah ncar Darwin, Australia. The mea-
surements were taken during the southern-hemisphere summer scasons of 1988 1989 and




1989 199().
as im table

Bin number 4

, reporting a

The disdrometer recorded the munber of drops in cach of 20 drop-diaincter bins
sample distribution cvery 30 scconds.

In order to fit a mmodel

D,

>2 ual 9,01 m_a::iﬁ. _ :o_voiom m_ 523.

1 0.36 - 0.48 mm 0.42 mm
2 | 048 0.6 1 05 mm

3 | 0.6 0.72 mm ©0.66 ~

1 0720 0.8 mm 0.78 mm

5 0.81 - 0.96 mm 0.9 mm

6 0.96 - 1.2 1mm 08 1min

7 1.2 144 mm 1.32 mn

8  144- 1.68 mm - Hbo nnn

9 1.68 _.cw ::“_‘_“ 1.8 mm

10 o 1.92- 2,16 Imm 2.0 mm

1] 206 2.52 mm S 23 mm
o 52 - 2.88 9.7 :_‘_ﬂ;
| 13 2.88 - 324 mm | O 3.06 mm

14 3.24 3.6 mm 342 mm
15 3.6 3.96 mm 3.78 1mm ‘

16 3.96 - 4.44 mm  42mm
17 1.41 - 1.92 mm A.Qﬂ mim
18 492 54 mm 5. _‘o:u‘:_:
[ 19 54 - 6.0 mm 5.7 mm

20 6.0 - 6.6 nin 6.3 1mnm

Table

Disdrometer bhin values
1967, is duc Lo a mis-calibration of the instrument

(the 20% discrepancy with the values n Joss and Waldvogel,

al. Darwin).

sample distribution, one could proceed in several ways. One way

is 1o express the predicted moments of the DSD as functions of (No, s, A), then use three

such as (1) to any such

suitable sample moments computed from one’s observations to perform the inversion and
deduce the values of the three parameters. This approach is quite unappealing bhecause its
because sample mo-

of the
values of (N, g1, A) which minimize the sum

the moments used, and, more important,
ed functions of sceveral of them) are biascc

i1s to find tho

estimates would depend on
ments (and, a fortiori, complic
actual moments. A simpler we
of the squared differences between the observed counts and those predicted by (1), This
least-squares approach implicitly assumes that the difference hetween the observation and

While

1 estimate

at
ay 1l

onc’s model is entirely due to white noise evenly spread among the sampling bins.



suchanassumption is appealingly simple, it does not allow one to use all the information at
hand. A maxii nuin-likel thood approach does. Indeed, one can view the drop-size distribu-
tion N(D) as the product of a drop-size density function Pua(D)) = At T piees AD PG ),
which depends on grand A only, with the total number of drops Nol'(ye -1 1 J)A - 1 Since
the latter is directly related to the observed total count, the problem of estimating jrand A

reduces to finding the values of these two parameters that maximize the likelihood
I] // A ]) ) (2)

Of obtaining the counts N that were computed from the observations (using equation 3 in
Sheppard and Joe, 1994), withD); as il table 1. Instead of the abstract paramcters No, 1
and A, we used the more physically meaninglul variables

, : : -4 }
D* = mass-weighted mean drop diameter = ! A7 T (3)
s = relative mass-weighted v s, deviation of drop diamecter = _r\/‘iliéi (4)

-
. . oy I(y-1 4.67
It - instantancous rain rate = 7.1 .1 07° __(/AI"| Yo ") No mm/hr, (5)

Relation (5) was obtained assuming that 1) is inmillimeters and that the fall velocity v of
a drop of diamcter Dimmis o= 3.78D%7 m/sec (Atlas and Ulbrich 1977). The maximum-
likelihood estimates are shown in the pairwise-scat t or diagrams of figures 1 a 1 f. Since the
measurcments made during very light rain are unrcliable hecause of the small sample size,
we i mposed a lower-bound conditionon . The particular value of 0.7 mm/hr was chosen
because it corresponds to the projected Tropical Rainfall Mecasuring Mission radar’s scnsi-
tivity (Kawanishiet al, ] 993). The values of the various conditional correlation cocflicients

T 89-90
sg80 | & || e

[k [T 063 ] -0.62
2 Ry T~ 0.08
S |0as ] o ™

N

Table 2: Correlation cocllicients for the 88-80 and 89-90 seasons.

(conditioned 011 IR > 0.7 nmin/hr) are given in table 2. As one might have expected, there
i s no significant correlation between the mearydrop diameters D* and the relati ve me an
variance s~ 0f the diameters. However, the data showsthatboththese quantitics are rather



strongly correlated with the rain rale. As to Ulbrich’s original variables, the most striking
correlationisth at of Ny with A: thiei rcorrela tion coeflicient is 0.92 for t he 1989 89 scason,
and 0.93 for 1989 90.

A popular way to make mathematically explicit the interdependences which uniderlic
the observed correlations is 1o use power-law regressions and express one variableinterms
o 1+ another; c.g. try to find intervals for @, b, ¢ and d suchthat wo :ap’or A = ci?
(sce c.g. Ulbrich, 1983 and 1992). The problems with such an approach are that one then
artificially int ro duces new cocflicients (nainely a, b, ¢ and d) whicharenot related to any o f
the original variablesina unique way, and whose1nutual covariances are therefore nnpossible
{o determine.  Since, in addition, such power-laws produce far more unknowns than one
started with, a more cflicient and consistent approach such as a simple (judicious) change of
variables shouldprove 1or¢ Useful.

The simplest way to change variables so as to end up with anindependent set is to find
the (orthogonal) cigenvectors of the covariance matrix. 1 lowever, the variables produced
using suchanapproach will nothe physically meaningful. Inaddition,it is very desirable
o specifically retain the rain rate 2 as one of the 3 variables sinceitisone of the quantities
of most interest. So rat her th an diagonalize the covariance matrix, let us decide to keep 12
as the fivst variable, and successively modify .1)* thens* inorder to end u1) with a sct of
uncorrelatedand, one hopes, joi ntly (log- Jnormal variables. Thescatter diagrams 1 cand 1(1
suggest that a lincar change of variables

log(D™) = log(D') -1 « log(RR) (6)

might allow one to replace D with a new variable D' such that 1’ and IR arc uncorrclated
(and nearly jointly log-normal), if the slope o is chosen to make the correlation 0, i.c. to
salisly

E{log(D™) log(I)} - a&{log(R)*} = E{log(D*)}E{log( 1)} - o E{log( )} (7)
Using the 1988 89 data (o cstimate thesccond-order momentsin (7), one finds that a

should equal 0. 1336, while the 1989 90 sample moments give the value (). 128 . Retaining
two significant digits gives a consistent val ue

a= 0.13 (8)

As to s*, thescaller diagrams “1 cand 1 f suggest that the s* R correlation is ducimostly
to data corresponding to high rain rates. Infact; when conditioned on 2 < 9 mm/hr; the
s* It conditional correlation cocflicient drops fror1 1 the original -0.45 to 0.()()24 for the 88 89
scason, and fromn-0.62to -().1 (i forthe89 90 dat a. Thercfore, rather than a lincar change
of variables, a quadratic form

log(s*) = log(s") -1 B log(1)? 9)



scems more suitable. The value of 4 that will make the correlation between 2 and the new

variable §” zero can be derived as before. In this case, one finds
B--0.02 (10)

I'imally, one needs to replace s « by a variable which is uncorrelated with cither 12 or D',
Calling the new variable S, if itis d efined byalincar change Of variables

log(s") log(s) -1y log(1)”) (11)

it will be autormatically un correlated with 22 (bocause s+ and 1) i), so it suflices to choose
v insuchaway that s* and D" are uncorrcla ted. Proceeding as b c¢fore, one finds

v: 0.3h (12)

T'hus our three uncorrclated variables are

I - Instantancous rain rate (13)
D DA T (14)
ﬂ‘ll(] s - S). ])/- 0.35 l{(l.(lQ log(R) (J F))

The scatter diagrams in figures 24 2 show the values O £ these new variables for the Darwin
1) S1)’'s. Themarginalstatistics for cachindividualvariableare sunmmnarized in table 3. It

| Mecan Standard Deviation
| [[1oss s0]1989 90 | 1988 89 | 1989 90
2 150 ] 156 || 033 0.36
o oB7 | 0355 || 0.037 | 0.038
k|| 82 | 1557 || 155 7| 2518
[log(1)') || 03877 |o0.42| Q23  0.22

104 0.012 0.014

lrog/(s") -0.98 3 o o s s

| log(RR) |J3J B 1 |- 1.Jy 1.3

Table 3: Marginal statistics of 12, D" and s~

is quiteencouraging to note that thestandard deviation of s seems very small. Toven thhe
variance of 1) is relatively small, in spite of the large variability evident in the rain rate
itsclf. I'inally, table 4 confirmns that the coi¢littioll” cocflicients are allnegligibly sinall. 1«01~
jointly log-norinal variables, the vanishing of the correlation coeflicients is equival ent to the
mutualindependence of the variables th emselves, Thus one can conclude that the Darwi n



—_ 89-90

88-89

N

A TR
s 0.075

Table 4: Correlation cocflicients of 12, 1" and &', for the 88-89 and 89-90 scasons.

data strongly suggests that {2, D', s’} are indeed independent jointly log-normal variables
paramctrizing the drop-size distribution, with the mean of log(1)’) approximately 0.4 and
its standard deviation approximately 0.22, while the mcan of log(s’) is approximately -1 and
its standard deviation approximately 0.02 . The original DSD parameters can be calculated
from {R, D', s'} using the relations

\wo,o,\_ log (1)

s T -4 (16)
J20-04 log(1?)- 0.13

A (1)
A 6T

No - 141- R (18)

NV \_od

Additional systematic DSD measurements {from ot er tropica locations should srove partic-
ularly uscful i confirming these observations.

3 Conclusions

Basced on two years’ worth of data from Darwin, one can paramctrize drop-size distributions
using the variables I, 1" and s" deflined above, and assume that these parameters are inde-
pendent and jointly log-normally distributed. Morcover, the variance of 1" is relatively small,
and that of s" s very small. These properties should make this parametrization particularly
usclul in retrieval problems.
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Figure captions

D, %) occurences during the 88-89 scason, D* in millimcters.

D, &%) occurences during the 89-90 scason, D* in millimeters.

1, DY) occurences during the 88-89 scason, 12 in i /hr and D* in mn.
il )

1R, D*) occurences during the 89-90 scason, 2 in nm/hr and D* in .
g & )

R, s*) occurences during the 88-89 scason, 12 in mm/hr

R, s*) occurences during the 89-90 scason, 1?2 in 1 /In

D' s

3

values during the 88-89 scason.

D' &") values during the 89-90 scason.

R, ') values during the 88-89 scason, 12 in m/hr.
R, D'y values during the 89-90 scason, 12 in min/hr.
R, ") values during the 88-89 scason, 2 in mn/hr.

IR, ") values during the 89-90 scason, It in mmn/hr,
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83-89
conditioned on R > 0.7 mm/h
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89-90
R > 0.7 mm/hr
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